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Abstract

This paper is devoted to the study of discrete-time fractional evolution equations

involving the Riemann-Liouville-like difference operator. Based on the relationship

between C0-semigroups and a distinguished class of sequences of operators, we show

the structure of the solutions for the inhomogenous Cauchy problem of abstract frac-

tional difference equations. Further, we establish two criteria for the existence and

uniqueness of solutions for the semilinear Cauchy problem. Some examples are also

provided to illustrate our main results.
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1 Introduction

Fractional calculus has gained increasing attention during the past three decades due to

its applications. It has been successfully applied to those fields that include computational

biology, economics, physics and so on. See the monographs by Kilbas et al. [23], Podlubny

[35], Diethelm [15], Zhou [42, 43], the papers [5, 6, 11, 12, 26, 36, 38] and the references

therein. In recent years, discrete fractional calculus has received increasing interest by

many mathematicians as well. Gray and Zhang [21] developed a fractional calculus for the

discrete nabla difference operator. Atici and Eloe [7, 8] developed the delta type fractional
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sums/differences with Riemann-Liouville-like operators and began the study of initial value

problems. The existence, uniqueness and positivity of solutions for the discrete fractional

boundary value problems have been studied by Goodrich [17, 18], as well as monotonicity

properties [14]. The modeling with fractional difference equations began to be studied by

Atici and Sengül [9]. Ferreira [16] proved a discrete fractional Gronwall inequality. More

recently, Wu and Baleanu [39] studied the discrete fractional logistic map and its chaos,

notably with the same definition of fractional delta operator that we will consider in this

paper. For an overview, one can see the recent monograph by Goodrich and Peterson [19].

In spite of the extensive research in this area, there are still some outstanding prob-

lems regarding fractional difference equations. In particular, further research of abstract

fractional difference equations with unbounded linear operators remains to be done. Some

models among these equations are closely connected with numerical methods for integro-

partial differential equations that are intermediate between diffusion and wave equations

[13] and evolution equations with memory [33]. On the other hand, the mixed models

that come from time discretization of partial differential equations occur not only in traf-

fic dynamics, but also in the theory of probability and in the theory of the chain processes

of chemistry and radioactivity [10]. Thus, the modeling by means of abstract fractional

difference equations provide a new viewpoint and should give new insights about time-

discrete behavior because we are taking into account memory effects of the materials that

are implicitly present in the mathematical modeling. Besides, in the reference [40] the au-

thors have pointed out that discrete fractional models have some new degrees of freedom

which can be used to capture the hidden aspects of real world phenomena with mem-

ory effects. Thus, it is worthwhile to study the behavior of abstract fractional difference

equations not only from a purely mathematical but also an applied perspective.

As for the abstract fractional difference equations, some results were presented for the

first time in [27, 28]. Since then, some developments have been made motivated by these

researches [2–4, 22, 24, 25, 29–32]. In [28], by using an operator theoretical method, the

author was successful to completely characterize the maximal regularity of solutions for

a class of discrete time evolution equations. In [27], Lizama considered the existence and

stability for fractional difference equations
C∆αu(n) = Au(n+ 1), n ∈ N0,

u(0) = u0 ∈ X,
(1.1)

where C∆α is the Caputo-like fractional difference operator of order 0 < α ≤ 1, and

A is a closed linear operator with domain D(A) defined on a Banach space X, N0 =

{0, 1, 2, ...}. It was the first time that the problem (1.1) showed a strong link between

the fractional differential and fractional difference operators. Further, by applying the
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properties of Poisson transformation, a concept that was introduced in [27], as well as

methods of operator theory, some results of continuous fractional evolution equations

can be generalized to situations involving abstract fractional difference equations. In [1],

Abadias and Lizama studied the existence and uniqueness of almost automorphic solutions

for nonlinear partial difference-differential equations modeled in abstract form as

∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,

for 0 < α ≤ 1 where A is the generator of a C0-semigroup defined on a Banach space X

and ∆α denote the fractional difference in Weyl-like sense. Some recent works of fractional

models with the Grünwald-Letnikov fractional difference can be found in [30, 37] and the

references therein, these models can serve as a new microstructural basis for the fractional

nonlocal continuum mechanics and physics.

Motivated by the above mentioned works, in this paper, we consider the existence of

solutions for nonlinear abstract fractional difference equations∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ N0;

u(0) = u0 ∈ X,
(1.2)

where ∆α is the Riemann-Liouville-like fractional difference operator of order 0 < α ≤ 1,

f : N0 → X, A is the infinitesimal generator of a bounded C0-semigroup {Q(t)}t≥0 with

domain D(A) defined on a Banach space X. It is important to remark that such problem

has only been recently studied in [29] but with A bounded. Therefore, our main contri-

bution in this paper is a significative advance in the study of the Cauchy problem (1.2)

with unbounded operator A, typically differential operators like the Laplacian, allowing

in this way to the analysis of mixed fractional difference-differential equations, using tools

of operator theory.

One reason to consider in this paper the Riemann-Liouville-like fractional difference

operator arises in the recent paper [27] where is proved that ∆α is linked with the Riemann-

Lioville fractional differential operator Dα by means of the Poisson transformation P.More

precisely, the following identity is true: ∆α◦P = P◦Dα. See [4, Theorem 4.2 and Theorem

4.5] for an up to date revision of the main properties of the Poisson transformation and a

proof of the above mentioned identity. A second reason, is that several fractional difference

operators appearing in the current literature are, in fact, related with the operator ∆α.

For instance, we have the identity C∆αu(n) = ∆αu(n)−k1−α(n+1)u(0) where 0 < α < 1

and k1−α is defined in (2.1) below. See [29, Theorem 2.4]. A second example is the identity

∆α ◦ τa = τa+1−α ◦∆α
a valid for 0 < α < 1 and a ∈ R, where τa denotes the translation

operator and ∆α
a is the fractional difference operator as defined by Atici and Eloe [8]. This

remarkable relationship, known as a transference principle, has been recently proved [20].
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We remark that, in contrast with the above mentioned difference operators, the opera-

tor ∆α enjoy many good properties that enables the handle of abstract fractional difference

equations in a simpler way. The main properties are that ∆α is a well defined operator in

the vector-valued sequence space s(N0, X), and that behaves nicely under (finite) convo-

lution [4]. Consequently, many useful tools, like the z-transform, are directly available.

This article is organized as follows. In Section 2, we introduce the main tools needed

to this work. In Section 3 we prove that, under the assumption that A generates a

bounded C0-semigroup {Q(t)}t≥0, there exists a sequence of bounded and linear operators

{Sα(n)}n∈N0 that is related with the semigroup {Q(t)}t≥0 by means of the subordination

formula:

Sα(n)x =

∫ ∞

0

∫ ∞

0
pn(t)fs,α(t)Q(s)x dsdt, n ∈ N0, x ∈ X,

where fs,α is the Lévy distribution and pn is the Poisson distribution. This result im-

proves [1, Theorem 3.5]. We note that an important property of the sequence of operators

{Sα(n)}n∈N0 is its automatic regularity: Sα(n)x ∈ D(A) for all n ∈ N0. Using this re-

markable fact, we show in Section 4 that u : N0 → [D(A)] verifies (1.2) if and only if u

satisfies u(0) = u0 ∈ D(A) and

u(n) = Sα(n)(I −A)u0 +
n−1∑
j=0

Sα(n− 1− j)f(j, u(j)), n ∈ N.

In section 5, we present our main findings on the existence of solutions for abstract frac-

tional semilinear difference equations modeled as (1.2). We prove that if f satisfies a

Lipschitz type condition, then for an initial condition u0 ∈ D(A) the problem (1.2) has

a unique solution in the vector valued space of sequences l∞(N0;X). Using a different

argument involving the compactness of the semigroup Q(t), we show that if f is merely

bounded in the first variable and sublinear in the second one, then the problem (1.2) with

initial condition u(0) = 0 has at least one solution in the fns-space of sequences l∞f (N;X).

Note that such vector-valued Banach space was only recently introduced in the literature

by Lizama and Velasco [29]. Finally, in Section 6, we provide some simple examples to

illustrate our main findings.

2 Preliminaries

As usual, we denote N0 = {0, 1, 2, . . .} and N = {1, 2, ...}. Let X be a Banach space

with norm ∥·∥, B(X) be the space of bounded linear operators fromX intoX endowed with

the norm ∥Q∥B(X) = sup{∥Q(x)∥ : ∥x∥ = 1}, where x ∈ X and Q ∈ B(X). We denote by

s(N0;X) the vectorial space consisting of all vector-valued sequences u : N0 → X.
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In this context, the forward Euler operator ∆ : s(N0;X) → s(N0;X) is defined by

∆u(n) := u(n+ 1)− u(n), n ∈ N0.

Recall that the finite convolution ∗ of two sequences u, v ∈ s(N0;X) is defined as follows

(u ∗ v)(n) :=
n∑

j=0

u(n− j)v(j), n ∈ N0.

In addition, for α > 0, we consider the scalar sequence {kα(n)}n∈N0 defined by

kα(n) =
Γ(n+ α)

Γ(α)Γ(n+ 1)
, n ∈ N0. (2.1)

This scalar sequence was introduced by Lizama in [27, 28] in the context of fractional

differences. It has several important properties. For instance, the semigroup property

(kα ∗ kβ)(n) =
n∑

j=0

kα(n− j)kβ(j) = kα+β(n), n ∈ N0, α > 0, β > 0.

It is easy to see that for all n ∈ N0 and for any α ∈ (0, 1], kα(n) ∈ (0, 1] and kα(n) is a

non-increasing sequence. Moreover, by [44, Vol I, p.77 (1.18)] we have

kα(n) =
nα−1

Γ(α)

(
1 +O

(
1

n

))
, n ∈ N, α > 0. (2.2)

Definition 2.1. [27] Let α > 0, the α-th order fractional sum operator is defined by

∆−αu(n) =
n∑

j=0

Γ(n− j + α)

Γ(α)Γ(n− j + 1)
u(j) =

n∑
j=0

kα(n− j)u(j), n ∈ N0.

Definition 2.2. [27] Let α > 0, the α-th order fractional difference operator (in the sense

of Riemann-Liouville-like) is defined by

∆αu(n) := ∆m ◦∆−(m−α)u(n), n ∈ N0,

where m− 1 < α < m, m = [α] + 1.

Lemma 2.1. [28] Let α ∈ (0, 1), a : N0 → C and b : N0 → X be given. Then

∆α(a ∗ b)(n) = (a ∗∆αb)(n) + b(0)a(n+ 1), n ∈ N0.

We recall the following classical result.

Theorem 2.1. (Schauder’s Fixed Point Theorem). Let Ω be a nonempty, closed and

convex subset of Banach space X. If P : Ω → Ω is completely continuous, then P has a

fixed point in Ω.
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Let us introduce the Mittag-Leffler function as follows

Eα,β(z) =
∞∑
n=1

zn

Γ(αn+ β)
=

1

2πi

∫
C

µα−βeµ

µα − z
dµ, z, β ∈ C, Re(α) > 0, (2.3)

where C is a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z|1/α

counter-clockwise. Its Laplace transform is given by∫ ∞

0
e−λttβ−1Eα,β(±ωtα)dt =

λα−β

λα ∓ ω
, ω ∈ C, Re(λ) > |ω|1/α. (2.4)

We will need the following function, called stable Lévy process, which was introduced

by Yosida [41]:

ft,α(λ) =
1

2πi

∫ σ+i∞

σ−i∞
ezλ−tzαdz, σ > 0, t > 0, λ ≥ 0, 0 < α < 1, (2.5)

where the branch of zα is taken such that Re(zα) > 0 for Re(z) > 0. This branch is single-

valued in the z-plane cut along the negative real axis. We denote the kernel function

gα(t) :=
tα−1

Γ(α)
, t > 0, α > 0,

and in case α = 0, we set g0(t) = δ(t), the Dirac measure concentrated at the origin. It

is well known that this function play a central role in the theory of fractional calculus.

We well need the following result that gives insight on the relationship between fractional

powers, the kernel function gα, the Mittag-Leffler function and stable Lévy processes.

Proposition 2.1. The following properties hold:

(i)
∫∞
0 e−λaft,α(λ)dλ = e−taα, t > 0, a > 0.

(ii) ft,α(λ) ≥ 0, λ > 0.

(iii)
∫∞
0 ft,α(λ)dλ = 1.

(iv)
∫∞
0 fs,α(t)ds = gα(t), t > 0.

(v)
∫∞
0 e−λsfs,α(t)ds = tα−1Eα,α,(−λtα), λ ∈ C, t > 0.

Proof. The proof of (i)-(iii) can be found in [41, p.260-262]. Next, we shall (iv) holds.

Since the function fs,α(t) is non-negative for t > 0, by applying (2.5) and the uniqueness

of the inverse Laplace transform, we have∫ ∞

0
fs,α(t)ds =

1

2πi

∫ ∞

0

∫ σ+i∞

σ−i∞
ezte−szαdzds =

1

2πi

∫ σ+i∞

σ−i∞

1

zα
eztdz = gα(t).
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Next, we prove that (v) is true. In fact, for all t > 0, in view of (2.3) and λ ∈ C, by
applying (2.5) again, we have∫ ∞

0
e−λsfs,α(t)ds =

1

2πi

∫ ∞

0

∫ σ+i∞

σ−i∞
ezt−szαe−λsdzds

=
1

2πi

∫ σ+i∞

σ−i∞

ezt

zα + λ
dz

=tα−1 1

2πi

∫ σ′+i∞

σ′−i∞

ez

zα + λtα
dz = tα−1Eα,α(−λtα).

Consequently, we obtain the desired results.

Finally, for each n ∈ N0, we recall that the Poisson distribution is defined by

pn(t) := e−t t
n

n!
, t ≥ 0.

One of the most interesting properties is associated with their infinite integral∫ ∞

0
pn(t)dt = 1, n ∈ N0.

Moreover, we recall that the Poisson transformation for a continuous function u(t), t ∈
[0,∞) is defined by

u(n) :=

∫ ∞

0
pn(t)u(t)dt, n ∈ N0. (2.6)

This definition was introduced by Lizama [27]. As pointed out in [27], the Poisson trans-

formation reveals a strong relation between gα and kα, and consequently the fractional

operators Dα
t and ∆α.

3 Resolvent sequences

Our basic assumption in this section is that the operator A in (1.2) is the infinitesimal

generator of a bounded C0-semigroup {Q(t)}t≥0. This means that there is a constant

M ≥ 1 such that M = supt∈[0,∞) ∥Q(t)∥B(X) < ∞. It is well known from [34, p.19,

Theorem 5.2(i)] that A is closed and D(A) is dense in X. Next, we use the notion of α-

resolvent sequence of bounded and linear operators which was introduced by Abadias and

Lizama [1] and it is an important tool to deal with abstract fractional difference equations.

Definition 3.1. Let α > 0 and A be a closed linear operator with domain D(A) defined

on a Banach space X. An operator-valued sequence {Sα(n)}n∈N0 ⊂ B(X) is called an

α-resolvent sequence generated by A if it satisfies the following conditions
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(i) Sα(n)x ∈ D(A) for all x ∈ X and ASα(n)x = Sα(n)Ax, for all n ∈ N0 and x ∈
D(A);

(ii) Sα(n)x = kα(n)x+A(kα ∗ Sα)(n)x, for all n ∈ N0 and x ∈ X.

The main properties of α-resolvent sequences are contained in the following result.

Lemma 3.1. [1] Let {Sα(n)}n∈N0 be an α-resolvent sequence generated by A. Then

(i) 1 ∈ ρ(A);

(ii) For all x ∈ X we have that Sα(0)x = (I − A)−1x and there exists a scalar sequence

{βα,n(j)}n,j∈N such that

Sα(n)x =

n∑
j=1

βα,n(j)(I −A)−(j+1), n ∈ N;

(iii) For all x ∈ X we have that Sα(0)x ∈ D(A) and Sα(n)x ∈ D(A2) for all n ∈ N.

Our first result is an improvement of [1, Theorem 3.5] where the exponential stability

of the semigroup is assumed.

Theorem 3.1. Let 0 < α ≤ 1 and A be the generator of a bounded C0-semigroup {Q(t)}t≥0

defined on a Banach space X. Then, A generates an α-resolvent sequence {Sα(n)}n∈N0

given by

Sα(n)x =

∫ ∞

0

∫ ∞

0
pn(t)fs,α(t)Q(s)x dsdt, n ∈ N0, x ∈ X. (3.1)

Proof. From above assumption, we know that there exists M ≥ 1 such that ∥Q(t)∥B(X) ≤
M for t ≥ 0. Define

Qα(t)x :=

∫ ∞

0
fs,α(t)Q(s)xds, t > 0, x ∈ X. (3.2)

Firstly, we observe that Qα(t) is well defined for t > 0. Indeed, in view of (2.5),

Proposition 2.1 (ii) and (iv), for any x ∈ X, we have

∥Qα(t)x∥ ≤
∫ ∞

0
fs,α(t)∥Q(s)x∥ds ≤M∥x∥

∫ ∞

0
fs,α(t)ds ≤M∥x∥gα(t), (3.3)

and hence, we obtain∫ ∞

0
e−Re(λ)t∥Qα(t)x∥dt ≤

M∥x∥
Γ(α)

∫ ∞

0
e−Re(λ)ttα−1dt ≤ M∥x∥

[Re(λ)]α
,

for Re(λ) > 0, x ∈ X. Consequently, Qα(t) is Laplace transformable and, using Fubini’s

theorem, we obtain

Q̂α(λ)x :=

∫ ∞

0
e−λtQα(t)xdt =

∫ ∞

0

(∫ ∞

0
e−λtfs,α(t)dt

)
Q(s)xds.
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Therefore, by (i) in Proposition 2.1 and a well-known property on the Laplace transfor-

mation of C0-semigroups, we have

(λαI −A)Q̂α(λ)x = (λαI −A)

∫ ∞

0
e−λαsQ(s)x ds = x, x ∈ X,

and

Q̂α(λ)(λ
αI −A)x =

∫ ∞

0
e−λαsQ(s)(λαI −A)x ds = x, x ∈ D(A).

It shows that A commutes with Qα(t) on D(A) and

Q̂α(λ)x =
1

λα
x+A

1

λα
Q̂α(λ)x, x ∈ X.

By the inversion of the Laplace transform, we obtain the identity

Qα(t)x = gα(t)x+A

∫ t

0
gα(t− s)Qα(s)xds, x ∈ X, (3.4)

and since A is closed, we also get

Qα(t)x = gα(t)x+

∫ t

0
gα(t− s)Qα(s)Axds, x ∈ D(A).

Since A commutes with Qα(t) and A is closed, by applying Poisson transformation

into (3.4), similarly to the remaining proof of [1, Theorem 3.5], one can see that

Sα(n)x = kα(n)x+A

n∑
j=0

kα(n− j)Sα(j)x, x ∈ X,

which implies that Definition 3.1 (i)-(ii) are satisfied. The proof is completed.

The above theorem has two important consequences that we give as corollaries.

Corollary 3.1. Let 0 < α ≤ 1 and A be the generator of a bounded C0-semigroup

{Q(t)}t≥0 defined on a Banach space X. Then,

∥Sα(n)x∥ ≤ kα(n) sup
t≥0

∥Q(t)∥B(X)∥x∥, for n ∈ N0, x ∈ X,

where {Sα(n)}n∈N0 is defined by (3.1).

Proof. From Theorem 3.1, we know that A generates an α-resolvent sequence {Sα(n)}n∈N0 .

Then for M := supt≥0 ∥Q(t)∥B(X) we have

∥Sα(n)x∥ ≤
∫ ∞

0

∫ ∞

0
pn(t)fs,α(t)∥Q(s)x∥ dsdt ≤M

∫ ∞

0
e−t t

n

n!
gα(t)dt∥x∥ =Mkα(n)∥x∥.

The second important consequence can be described as follows.
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Corollary 3.2. Let 0 < α ≤ 1 and A be the generator of a bounded and compact C0-

semigroup {Q(t)}t>0 defined on a Banach space X. Then, A generates a compact α-

resolvent sequence {Sα(n)}n∈N0 which is defined in (3.1).

Proof. Let ε > 0 be given. We define an operator sequence Sε
α as follows

Sε
α(n)x :=

∫ ∞

0

∫ ∞

ε
pn(t)fs,α(t)Q(s)x dsdt

= Q(ε)

∫ ∞

0

∫ ∞

ε
e−t t

n

n!
fs,α(t)Q(s− ε)x dsdt,

for x ∈ X, where in the second identity we use the semigroup property. Then, from the

compactness of Q(ε)(ε > 0), and from Corollary 3.1, we obtain that the set Vε = {Sε
α(n)x :

n ∈ N0} is relatively compact in X for ε > 0. Moreover, for any x ∈ X, we have

∥Sα(n)x− Sε
α(n)x∥ =

∥∥∥∫ ∞

0

∫ ε

0
e−t t

n

n!
fs,α(t)Q(s)x dsdt

∥∥∥
≤M∥x∥

∫ ε

0

∫ ∞

0
e−t t

n

n!
fs,α(t) dtds.

Since et > tn

n! and fs,α(t) ≥ 0 for t > 0, then e−t tn

n! < 1 and by (iii) in Proposition 2.1 we

have ∫ ∞

0
e−t t

n

n!
fs,α(t)dt <

∫ ∞

0
fs,α(t)dt = 1, s > 0.

Therefore, we obtain ∫ ε

0

∫ ∞

0
e−t t

n

n!
fs,α(t) dtds < ϵ.

Consequently,

∥Sα(n)x− Sε
α(n)x∥ → 0, as ε→ 0.

Hence, there are relatively compact sets arbitrarily close to the set V = {Sα(n)x : n ∈ N0}
for x ∈ X. Thus, the set V is also relatively compact in X. It means that the α-resolvent

sequence {Sα(n)}n∈N0 is compact.

Observe that the conclusion of compactness for Sα(n) also follows from the represen-

tation in Lemma 3.1 (ii), namely, assuming that (I −A)−1 is a compact operator. In this

way, no assumption on A for the generation of a compact C0-semigroup is needed.

4 The inhomogeneous Cauchy problem

In this section, we consider the inhomogeneous linear abstract fractional difference

equations on a Banach space X given by∆αu(n) = Au(n+ 1) + f(n), n ∈ N0,

u(0) = u0 ∈ X,
(4.1)
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where 0 < α ≤ 1 and A is the generator of a bounded C0-semigroup {Q(t)}t≥0. Note that,

in particular, (I − A)−1 exists, because λ ∈ ρ(A) for all Re(λ) > 0 by the Hille-Yosida

theorem [34].

Definition 4.1. Let f ∈ s(N0;X) be given. We say that u ∈ s(N0;X) is a strong solution

of (4.1) if u(n) ∈ D(A) for all n ∈ N0 and u(n) satisfies (4.1).

In what follows, we always denote by {Sα(n)}n∈N0 the α-resolvent sequence generated

by A which is defined in (3.1). The following theorem is the main result of this section. It

is interesting to observe that, in contrast with the continuous case, no additional regularity

on the range of the sequence f is needed.

Theorem 4.1. Let 0 < α < 1 and f ∈ s(N0;X). Then (4.1) admits a strong solution

u ∈ s(N0; [D(A)]) if and only if u satisfies u(0) = u0 ∈ D(A) and

u(n) = Sα(n)(I −A)u0 +

n−1∑
j=0

Sα(n− 1− j)f(j), n ∈ N. (4.2)

Proof. ⇐) Suppose (4.2) holds. By (iii) in Lemma 3.1 we have u(n) ∈ D(A) for all n ∈ N0.

Next, we prove that the following identity holds:

∆αSα(n)x = ASα(n+ 1)x, n ∈ N0, x ∈ X.

Indeed, convolving the proposed identity of (ii) in Definition 3.1 by k1−α, we have

(k1−α ∗ Sα)(n)x = (k1−α ∗ kα)(n)x+A(k1−α ∗ kα ∗ Sα)(n)x, n ∈ N0.

Applying the semigroup property of the kernels kα, and the relationship between frac-

tional sum and convolution, the above equality is equivalent to the following expression

∆−(1−α)Sα(n)x = k1(n)x+A
n∑

j=0

k1(n− j)Sα(j)x, n ∈ N0.

Therefore, using k1(j) = 1 and ∆k1(j) = 0 for all j ∈ N0, we get

∆αSα(n)x =∆∆−(1−α)Sα(n)x = ∆k1(n)x+A∆

n∑
j=0

k1(n− j)Sα(j)x

=A
n+1∑
j=0

Sα(j)x−A
n∑

j=0

Sα(j)x

=ASα(n+ 1)x,

for all n ∈ N0 and all x ∈ X, and then the claim is proved.
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Next, we apply the operator ∆α into (4.2), it yields

∆αu(n) = ∆αSα(n)(I −A)u0 +∆α
n−1∑
j=0

Sα(n− 1− j)f(j), n ∈ N.

In addition, by Lemma 2.1, we have

∆α(Sα ∗ f)(n− 1) =

n−1∑
j=0

∆αSα(j)f(n− 1− j) + Sα(0)f(n)

=

n∑
j=1

∆αSα(j − 1)f(n− j) + Sα(0)f(n)

=
n∑

j=1

ASα(j)f(n− j) + Sα(0)f(n)

=

n∑
j=0

ASα(j)f(n− j)−ASα(0)f(n) + Sα(0)f(n)

=A(Sα ∗ f)(n) + f(n),

where we applied the fact that 1 ∈ ρ(A) and the identity Sα(0)x = (I − A)−1x for all

x ∈ X, see Lemma 3.1. Therefore, it follows that

∆αu(n) =∆αSα(n)(I −A)u0 +∆α(Sα ∗ f)(n− 1)

=ASα(n+ 1)(I −A)u0 +∆α(Sα ∗ f)(n− 1)

=Au(n+ 1)−A(Sα ∗ f)(n) + ∆α(Sα ∗ f)(n− 1)

=Au(n+ 1)−A(Sα ∗ f)(n) +A(Sα ∗ f)(n) + f(n)

=Au(n+ 1) + f(n).

⇒) By hypothesis, u(0) = u0 ∈ D(A). Using the fact that ∆αSα(n) = ASα(n+1) and

Lemma 2.1 we obtain

∆α(Sα ∗ u)(n− 1) = A(Sα ∗ u)(n) + u(n), n ∈ N, (4.3)

and again by Lemma 2.1,

∆α(Sα ∗ u)(n− 1) = (Sα ∗∆αu)(n− 1) + Sα(n)u(0), n ∈ N. (4.4)

Therefore, if u is a solution of (4.1), then

(Sα ∗∆αu)(n− 1) =
n−1∑
j=0

Sα(n− 1− j)∆αu(j)

=
n−1∑
j=0

Sα(n− 1− j)Au(j + 1) +
n−1∑
j=0

Sα(n− 1− j)f(j) (4.5)
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=A
n∑

j=0

Sα(n− j)u(j)−ASα(n)u(0) +

n−1∑
j=0

Sα(n− 1− j)f(j)

=A(Sα ∗ u)(n)−ASα(n)u(0) + (Sα ∗ f)(n− 1).

Putting (4.3) and (4.4) into (4.5), we obtain

u(n) = Sα(n)(I −A)u(0) + (Sα ∗ f)(n− 1), n ∈ N.

The proof is completed.

5 The semilinear Cauchy problem

In this section, we study the existence of solutions for the following nonlinear abstract

fractional difference equation∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ N0;

u(0) = u0,
(5.1)

where α > 0, A is the generator of a bounded C0-semigroup and f : N0×X → X is given.

We introduce the next definition of solutions.

Definition 5.1. Let 0 < α ≤ 1 and A be the generator of an α-resolvent sequence

{Sα(n)}n∈N0. We say that u ∈ s(N0; [D(A)]) is a solution of (5.1) if u satisfies u(0) =

u0 ∈ D(A) and

u(n) = Sα(n)(I −A)u0 +
n−1∑
j=0

Sα(n− 1− j)f(j, u(j)), n ∈ N. (5.2)

According to Theorem 4.1, this definition is consistent with true solutions of (5.1).

Also note that u(n) ∈ D(A) for all n ∈ N0 because we always have Sα(n)x ∈ D(A) for all

x ∈ X and n ∈ N0. See Lemma 3.1.

Firstly, we consider the problem (5.1) on the vector-valued Banach space of sequences

l∞(N0;X), which consists of the following set

l∞(N0;X) := {u : N0 → X, sup
n∈N0

∥u(n)∥ <∞},

endowed with the norm ∥u∥∞ = supn∈N0
∥u(n)∥.

In order to state our first existence result, we will need the following hypothesis.

(H1) A is the generator of a bounded C0-semigroup {Q(t)}t≥0 withM := supt≥0 ∥Q(t)∥B(X)

and α-resolvent sequence defined in (3.1) for 0 < α < 1.
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(H2) f(n, 0) ≡ 0, and there exist β ∈ [α, 1) and 0 < L < 1
M , such that

∥f(n, x)− f(n, y)∥ ≤ Lk1−β(n)∥x− y∥, for any x, y ∈ X, n ∈ N0.

Noting that, by (2.2), the hypothesis (H2) implies f(n, x) → 0 as n→ ∞ for all x ∈ X.

The next is the first main theorem of this section, concerning bounded solutions of

problem (5.1).

Theorem 5.1. Assume that A satisfies (H1) and f satisfies (H2). Then for any u0 ∈
D(A), the problem (5.1) has a unique solution u in l∞(N0;X).

Proof. Let us define the map P : l∞(N0;X) → l∞(N0;X) as follows

(Pu)(n) := Sα(n)(I −A)u0 +
n−1∑
j=0

Sα(n− 1− j)f(j, u(j)), n ∈ N,

and (Pu)(0) = u0. We first show that P is well defined. In fact, let u ∈ l∞(N0;X) be

given, it follows from (H2) that

∥f(n, u(n))∥ ≤ Lk1−β(n)∥u(n)∥, for any u ∈ l∞(N0;X), n ∈ N0.

By (H2), Corollary 3.1 and observing that 1+α− β ∈ (0, 1] for 0 < α ≤ β < 1, we obtain

∥(Pu)(n)∥ ≤∥Sα(n)(I −A)u0∥+
n−1∑
j=0

∥Sα(n− 1− j)f(j, u(j))∥

≤Mkα(n)∥(I −A)u0∥+
n−1∑
j=0

∥Sα(n− 1− j)(f(j, u(j))− f(j, 0))∥

≤∥(I −A)u0∥+ML
n−1∑
j=0

kα(n− 1− j)k1−β(j)∥u(j)∥

≤∥(I −A)u0∥+ML∥u∥∞k1+α−β(n− 1)

≤∥(I −A)u0∥+ML∥u∥∞, n ∈ N,

where we used the fact that ks(n) < ks(0) = 1 because ks(n) is a nonincreasing sequence

for each 0 < s ≤ 1 and n ∈ N. It implies that P is well defined.

For any u, v ∈ l∞(N0;X), by (H2), we get,

∥(Pu)(n)− (Pv)(n)∥ ≤M
n−1∑
j=0

kα(n− 1− j)∥f(j, u(j))− f(j, v(j))∥

≤ML
n−1∑
j=0

kα(n− 1− j)k1−β(j)∥u(j)− v(j)∥

≤MLk1+α−β(n− 1)∥u− v∥∞
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≤ML∥u− v∥∞,

for all n ∈ N. Hence, it follows that ∥Pu−Pv∥∞ ≤ML∥u− v∥∞. In view of ML < 1, we

conclude the result by the Banach fixed point theorem.

It order to study solutions that behaves like nn! at infinity, we consider the fns-space

of vector-valued sequences l∞f (N;X) introduced in [29] and defined by

l∞f (N;X) :=

{
u : N → X, sup

n∈N

∥u(n)∥
nn!

<∞
}
,

endowed with their natural norm ∥u∥f = sup
n∈N

∥u(n)∥
nn!

. From [29] we note that the sequence

1

nn!

n−1∑
j=0

jj! has the following properties

sup
n∈N

1

nn!

n−1∑
j=0

jj! =
5

18
and lim

n→∞

1

nn!

n−1∑
j=0

jj! = lim
n→∞

n!− 1

nn!
= 0. (5.3)

We will need the following Lemma.

Lemma 5.1. [29] Let U ⊂ l∞f (N;X) be such that

(a) The set Hn(U) =
{u(n)
nn!

: u ∈ U
}

is relatively compact in X, for all n ∈ N.

(b) lim
n→∞

sup
u∈U

∥u(n)∥
nn!

= 0, that is, for each ε > 0, there is N > 0 such that
∥u(n)∥
nn!

< ε,

for each n ≥ N and for all u ∈ U .

Then U is relatively compact in l∞f (N;X).

For a given function g : N0 × X → X, the Nemytskii operator Ng : l∞f (N;X) →
l∞f (N;X) (with g restricted to N) is defined by

Ng(u)(n) := g(n, u(n)), n ∈ N.

In order to obtain our second main result, we will need the following assumptions

(H3) A is the generator of a compact C0-semigroup {Q(t)}t>0 and α-resolvent sequence

defined in (3.1) for 0 < α < 1.

(H4) There exists a positive sequence a(·) ∈ l∞(N0) and a function ψ : R+ → R+, with

ψ(r) ≤ r for r ∈ R+ such that ∥g(n, x)∥ ≤ a(n)ψ
(
∥x∥
)
, for all n ∈ N0 and x ∈ X.

(H5) The Nemytskii operator Ng is continuous in l∞f (N;X).



16 J.W. He, C. Lizama and Y. Zhou

Example 5.1. It is easy to check that the function g : N0 ×X → X defined by g(n, x) :=

cos(n)x satisfies (H4) and (H5).

Theorem 5.2. Assume that A satisfies (H3) and g satisfies (H4)-(H5). Then, the prob-

lem (5.1) with u(0) = 0 has at least one solution u ∈ l∞f (N;X) provided that ∥a∥∞ ≤
18/
(
5 supt≥0 ∥Q(t)∥B(X)

)
.

Proof. Let us define the map P : l∞f (N;X) → l∞f (N;X) as follows

(Pu)(n) := Sα(n− 1)g(0, u(0)) +

n−1∑
j=1

Sα(n− 1− j)g(j, u(j)), n ∈ N.

Since u(0) = 0 and by hypothesis (H4), we have g(n, 0) = 0 for all n ∈ N0. Then we can

rewrite P as

(Pu)(n) =
n−1∑
j=0

Sα(n− 1− j)g(j, u(j)), n ∈ N,

where we understand u as their extension to N0 by u(0) = 0. Firstly, we show that P is

well defined. Let u ∈ l∞f (N;X) be given. For each n ∈ N, by Corollary 3.1 and (H4), we

have

∥(Pu)(n)∥ ≤
n−1∑
j=0

∥Sα(n− 1− j)g(j, u(j))∥

≤ sup
t≥0

∥Q(t)∥B(X)

n−1∑
j=0

kα(n− 1− j)a(j)ψ
(
∥u(j)∥

)
≤ sup

t≥0
∥Q(t)∥B(X)∥a∥∞

n−1∑
j=0

∥u(j)∥

≤ sup
t≥0

∥Q(t)∥B(X)∥a∥∞∥u∥f
n−1∑
j=0

jj!,

where we used the fact that kα(n) < kα(0) = 1 because kα(n) is a non increasing sequence

for 0 < α ≤ 1 and n ∈ N. Denote M := supt≥0 ∥Q(t)∥B(X). Then, by (5.3) we obtain

∥(Pu)(n)∥
nn!

≤M∥a∥∞∥u∥f
1

nn!

n−1∑
j=0

jj! ≤ 5

18
M∥a∥∞∥u∥f . (5.4)

This proves that P is well defined. Now, we show that P is continuous. Let {um}∞m=1 ⊂
l∞f (N;X) be a sequence such that um → u as m→ ∞ in the norm of l∞f (N;X). Then

∥(Pum)(n)− (Pu)(n)∥ ≤M
n−1∑
j=0

kα(n− 1− j)∥g(j, um(j))− g(j, u(j))∥
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≤M
n−1∑
j=0

∥g(j, um(j))− g(j, u(j))∥

≤M∥Ng(um)−Ng(u)∥f
n−1∑
j=0

jj!.

Therefore, for all n ∈ N, we have

∥(Pum)(n)− (Pu)(n)∥
nn!

≤M∥Ng(um)−Ng(u)∥f
1

nn!

n−1∑
j=0

jj!

≤ 5

18
M∥Ng(um)−Ng(u)∥f → 0, as m→ ∞,

which means that ∥Pum − Pu∥f → 0 as m→ ∞. Therefore P is continuous.

Since Q(t) is compact for t > 0, then from Corollary 3.2, we know that the sequence

of operators {Sα(n)}n∈N0 is compact. Let r > 0 be given. We define a set by

Sr := {ω ∈ l∞f (N;X)| ∥ω∥f ≤ r}.

Clearly, Sr is a nonempty, bounded, closed and convex subset of l∞f (N;X). In view of

(5.4) and (H4), we can deduce that P maps Sr into itself. Thus, it remains to show that

P is a compact operator.

In order to prove that U := PSr is relatively compact, we will use Lemma 5.1. We

check that the conditions in this lemma are satisfied:

(a) Let v = Pu for any u ∈ Sr. We have

v(n) = (Pu)(n) =
n−1∑
k=0

Sα(n− 1− k)g(k, u(k))

=

n−1∑
k=0

Sα(k)g(n− 1− k, u(n− 1− k)), n ∈ N,

and then,

v(n)

nn!
=

1

n!

(
1

n

n−1∑
k=0

Sα(k)g(n− 1− k, u(n− 1− k))

)
.

Therefore v(n)
nn! ∈ 1

n!co(Kn), where co(Kn) denotes the convex hull of Kn for the set

Kn =

n−1⋃
k=0

{
Sα(k)g(ξ, x) : ξ ∈ {0, 1, 2, ..., n− 1}, ∥x∥f ≤ r

}
, n ∈ N.

On the one hand, for every m ∈ N0 and σ > 0, the set {g(k, x) : 0 ≤ k ≤ m, ∥x∥f ≤ σ} is

bounded because from condition (H4) we have ∥g(k, x)∥ ≤ a(k)ψ
(
∥x(k)∥

)
≤ mm!∥a∥∞σ

for all 0 ≤ k ≤ m and ∥x∥f ≤ σ. Consequently, the set {Sα(n)g(k, x) : 0 ≤ k ≤
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m, ∥x∥f ≤ σ} is relatively compact in X for all n ∈ N0 from the fact that {Sα(n)}n∈N0

is compact. Then it follows that each set Kn is relatively compact. From the inclusions

Hn(U) =
{v(n)
nn!

: v ∈ U
}

⊆ 1

n!
co(Kn) ⊆

1

n!
co
(
Kn

)
, we conclude that the set Hn(U) is

relatively compact in X, for all n ∈ N.

(b) Let u ∈ Sr and v = Pu. Using condition (H4), for each n ∈ N we have

∥v(n)∥
nn!

≤ 1

nn!

n−1∑
j=0

∥Sα(n− 1− j)g(j, u(j))∥

≤ M

nn!
∥a∥∞

n−1∑
j=0

kα(n− 1− j)∥u(j)∥

≤M∥u∥f∥a∥∞
1

nn!

n−1∑
j=0

jj! ≤Mr∥a∥∞
1

nn!

n−1∑
j=0

jj!.

Then (5.3) implies that limn→∞
∥v(n)∥
nn! = 0 independently of u ∈ Sr. Therefore, U = PSr

is relatively compact in l∞f (N;X) from Lemma 5.1, and by applying the continuity of

operator P, we conclude that P is a completely continuous operator. Thus, the Schauder’s

fixed point theorem shows that P has at least one fixed point u ∈ l∞f (N;X). The proof is

completed.

6 Examples

Example 6.1. We can describe the heat flow in a ring of length one with a temperature

dependent “source” at discrete time n ∈ N by the following evolution equation (see [34,

p.234] and references therein)
u(n, z)− u(n− 1, z) =

∂2

∂z2
u(n, z) +G(u(n, z)), 0 < z < 1,

u(n− 1, 0) = u(n− 1, 1), u′z(n− 1, 0) = u′z(n− 1, 1),

u(0, z) = u0(z),

(6.1)

where G is a given function.

We rewrite this model as an abstract difference equation. As a natural Banach space,

we choose X = Cp([0, 1]) the space of all continuous real valued periodic functions hav-

ing period 1 with the norm ∥u∥ = max0≤z≤1 |u(z)|. The space X consists therefore of

continuous functions on [0, 1] satisfying u(0) = u(1).

On this Banach space X, we define an operator A by Av = v′′ with its domain

D(A) = {v : v, v′, v′′ ∈ X, v(0) = v(1)}.



Discrete Time Fractional Evolution Equations 19

Then, by [34, Chapter 8, Lemma 2.1], the operator A generates a C0-semigroup {Q(t)}t≥0

which is compact, bounded and analytic on X.

With those definitions, Equation (6.1) is a particular case of the abstract difference

equation

∆αx(n) = Ax(n+ 1) + f(n, x(n)), n ∈ N0, (6.2)

where 0 < α ≤ 1, x : N0 → X is defined by x(n)(z) := u(n, z) and the function f :

N0 ×X → X is given by

f(n, x(n))(z) = G(u(n, z)).

In particular, if f = 0, then the solution of (6.2) with initial condition x(0) = x0 and

α = 1 is given by

x(n) = (I −A)−nx0, n ∈ N.

Hence, by Theorem 3.1, we conclude that for each 0 < α ≤ 1, the operator A generates

a α-resolvent sequence Sα(n). By Corollary 3.2, the operator A generates a compact

α-resolvent sequence Sα(n).

Example 6.2. Let Ω ⊂ Rn be a bounded open set and X = L2(Ω). We consider the

following discrete abstract Cauchy problem
∆αu(n, z) = ∇2u(n+ 1, z) + f(n, z), n ∈ N0, z ∈ Ω,

u(n, z) = 0, n ∈ N0, z ∈ ∂Ω

u(0, z) = u0(z), z ∈ Ω,

(6.3)

where f : R+ ×X → X and ∇2 is the Laplacian operator.

Now, let A = ∇2 be the Laplacian operator with Dirichlet boundary conditions and

D(A) =
{
v ∈ H1

0 (Ω) ∩H2(Ω), Av ∈ L2(Ω)
}
.

We denote by {−λl, ϕl}∞l=1 the eigensystem of the operator A, where {λl}∞l=1 denotes

the set of eigenvalues satisfying 0 < λ1 ≤ λ2 ≤ · · · ≤ λl ≤ · · · , and λl → ∞ as l → ∞,

and {ϕl}∞l=1 denotes the corresponding eigenfunctions. It is well know that ϕl can be

normalized so that {ϕl}∞l=1 is an orthonormal basis of X. Hence, it yields

Au = −
∞∑
l=1

λl(u, ϕl)ϕl, u ∈ D(A),

where (·, ·) is the inner product in X. It is clear that the operator A generates a C0-

semigoup {Q(t)}t>0 which is compact, bounded, analytic and explicitly given by

Q(t)u =
∞∑
l=1

e−λlt(u, ϕl)ϕl, u ∈ D(A).
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Hence, by applying Theorem 3.1, (v) in Proposition 2.1 and Corollary 3.2, we can obtain

a subordinated, discrete compact α-resolvent family {Sα(n)}n∈N0 as follows

Sα(n)u =

∫ ∞

0

∫ ∞

0
pn(t)

∞∑
l=1

fs,α(t)e
−λls(u, ϕl)ϕldsdt

=

∫ ∞

0
pn(t)

∞∑
l=1

tα−1Eα,α(−λltα)(u, ϕl)ϕldt.
(6.4)

By applying [44, Theorem 5.1] and (2.4), we have∫ ∞

0
pn(t)t

α−1Eα,α(−λltα)dt =
(−1)n

n!

(
L
(
tα−1Eα,α(−λltα)

))(n)
(1)

=
(−1)n

n!

(
(sα + λl)

−1
)(n) ∣∣∣∣

s=1

,

where L denotes the Laplace transform. Let βα,0(0) := 1 and βα,n(0) := 0 for n ∈ N, then
by (ii) in Lemma 3.1, there exists a scalar sequence {βα,n(j)}n,j∈N0 such that

(−1)n

n!

(
(sα + λl)

−1
)(n) ∣∣∣∣

s=1

=

n∑
j=0

βα,n(j)(1 + λl)
−(j+1), n ∈ N0.

Thus, we have

Sα(n)u =
∞∑
l=1

n∑
j=0

βα,n(j)(1 + λl)
−(j+1)(u, ϕl)ϕl, u ∈ D(A), n ∈ N0. (6.5)

Therefore, we obtain that (6.3) possesses a solution and its explicit form is given by

u(n) =

∞∑
l=1

n∑
j=0

βα,n(j)(1 + λl)
−j(u0, ϕl)ϕl

+
n−1∑
m=0

∞∑
l=1

n−1−m∑
j=0

βα,n−1−m(j)(1 + λl)
−(j+1)(f(m, ·), ϕl)ϕl, n ∈ N.

Example 6.3. For any λ ∈ C, |λ| < 1 and 0 < α ≤ 1, we consider the following equations∆αu(n) = −λu(n+ 1) + f(n, u(n)),

u(0) = u0.
(6.6)

It is clear that Re(λ) > 0 is the generator of the bounded C0-semigroup Q(t) = e−λt

for t ≥ 0. Hence, by applying Theorem 3.1, (v) in Proposition 2.1 and the definition of

Mittag-Leffler function, we obtain the discrete α-resolvent family {Sα(n)}n∈N0 as follows

Sα(n) =

∫ ∞

0

∫ ∞

0
pn(t)fs,α(t)e

−λsdsdt

=

∫ ∞

0
pn(t)t

α−1Eα,α(−λtα)dt =
∞∑
i=0

(−λ)i Γ(αi+ α+ n)

Γ(αi+ α)Γ(n+ 1)
.



Discrete Time Fractional Evolution Equations 21

Then, by the definition of kα(n), the explicit form of the solution of equation (6.6) is given

by

u(n) =
∞∑
i=0

(−λ)i(1− λ)kαi+α(n)u0 +
∞∑
i=0

n−1∑
j=0

(−λ)ikαi+α(n− j − 1)f(j, u(j)), n ∈ N.

Example 6.4. We consider the following nonlinear abstract fractional difference equations∆0.5x(n) = Ax(n+ 1) + 0.1k0.4(n) sin(x(n)), n ∈ N0,

x(0) = u0.
(6.7)

If A is the generator of a contraction C0-semigroup {Q(t)}t≥0, then by Theorem 3.1, we

conclude that for each 0 < α ≤ 1, the operator A generates an α-resolvent sequence Sα(n)

with M = 1. Hence, (H1) holds. Denote α = 0.5 and f(n, x(n)) = 0.1k0.4(n) sin(x(n)) for

n ∈ N0. Note that

∥f(n, x(n))− f(n, y(n))∥ =0.1k0.4(n)∥ sin(x(n))− sin(y(n))∥

=0.2k0.4(n)

∥∥∥∥cos(x(n) + y(n)

2

)
sin

(
x(n)− y(n)

2

)∥∥∥∥
≤0.1k0.4(n)∥x(n)− y(n)∥,

which implies that (H2) holds. Following Theorem 5.1, we obtain that for any u0 ∈ D(A)

there exist a unique solution of (6.7) in l∞(N0;X).

If A is the generator of a compact C0-semigroup {Q(t)}t>0, then by Corollary 3.2, we

conclude that for each 0 < α ≤ 1, the operator A generates a compact α-resolvent sequence

Sα(n). Then (H3) holds. Denote α = 0.5 and g(n, x(n)) = k0.8(n) sin(x(n)) for n ∈ N0.

Consider the Nemystkii operator Ng(u) : N → X defined by Ng(u)(n) := g(n, u(n)).

Obviously,

∥g(n, x(n))∥ = a(n)∥ sin(x(n))∥ ≤ a(n)∥x(n)∥,

where a(n) = k0.8(n). Then (H4) and (H5) hold. Thus, following Theorem 5.2, we obtain

the existence of at least one solution of∆0.5x(n) = Ax(n+ 1) + k0.8(n) sin(x(n)), n ∈ N0,

x(0) = 0.

in the space l∞f (N;X).
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